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Overview 
» This note describes principal component analysis (PCA) and our method for using it to model 
yield curve dynamics.  This has particular application to risk drivers representing interest rate 
movements in proxy functions, as generated using the B&H Proxy Generator. 

» The theoretical basis of PCA is explained, along with its relation to model reduction.  The 
main calculation methods for obtaining the principal components (PCs) are presented and the role 
of transformations, including centering and scaling as well as more specific transformations, is 
outlined.  The key question of how many PCs (or factors) should be retained in the reduced model 
is addressed. 

» The inverse problem of determining the PCs magnitudes that best represent a given yield 
curve is studied in detail and a simple analytical solution is presented. 

» We consider the trade-off between the number of PCs that are retained and the ability to 
reproduce yield curves to a given accuracy.  Of particular concern is the reproduction of out-of-
sample yield curves (i.e. those that were not used in the analysis to derive the PCs) which often 
arise during stress testing.  This is shown to potentially require many more PCs than we might first 
think.  A simple method for artificially extending the range of yield curves is presented, which 
makes the PCs more robust to common yield curve perturbations and/or stresses. 

» In summary, it is not always safe to assume that a two-factor interest rate model means that 
only two PCs are required or that a three-factor interest rate model means that only three PCs are 
required.  The actual number of PCs required depends on the desired usage of the reduced model 
in terms of what yield curves are to be reproduced.  The danger is that two or three PCs are 
assumed and people rely on these being sufficient to accurately model yield curves that were not 
used in the analysis, such as a 100bp parallel stress.
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1. Introduction 
This document describes the method of principal component analysis (PCA) and its application to the selection of risk drivers for 
capital modelling purposes.  There are a multitude of other uses which revolve around common themes of dimension reduction, 
system simplification, etc.  The main idea behind PCA is that a high dimensional system can be approximated to a reasonable 
degree of accuracy by a system with a smaller number of dimensions by exploiting correlations between the system variables. 

One of the main applications in finance is to the modelling of yield curve dynamics.  The yield curve could be portrayed in a 
number of formats and we may apply PCA to any of these formats, but we focus on forward rates here.  If we model the yield 
curve as a series of points representing forward rates at various terms as presented in  Figure 1(a), we might have 50 values 
describing the yield curve.  Typically a yield curve model is developed and calibrated so as to produce realistic yield curves at future 
times.  As the yield curve evolves over time, each forward rate can change.  It is well understood that adjacent points on the yield 
curve do not move independently.  PCA is a method for identifying the dominant ways in which various points on the yield curve 
move together. 

Using a structural model for yield curve evolution such as the two factor Black-Karasinski model, LMM or LMM Plus, realistic 
samples of the yield curve at a particular time horizon (typically one year) can be obtained.  By structural, we mean a stochastic 
yield curve model that has a structure of yield curve evolution over time that is defined by stochastic differential equations.  As an 
example, consider the two factor Black-Karasinski model calibrated for the USD economy at the end of December 2012.  We use 
50 forward rates with annual tenor to represent the yield curves.  The structural model and its calibration define the yield curve 
dynamics and hence the set of possible yield curves that may be produced in a scenario set, such as those shown in  Figure 1(b).  
Note that this set of possible yield curves is usually limited by the structure of the model, often restricted to realistic yield curves 
that obey no arbitrage conditions or the like.  Alternatively, the same PCA methods can be applied to a set of historical yield 
curves. 

PCA allows us to take such a set of yield curves (or related quantity), process them using standard mathematical methods, and 
then define a reduced form model for the yield curve (or related quantity).  Typically, this reduced form model retains only a small 
number of principal components (PCs) but can reproduce the vast majority of yield curves that the full structural model could.  
Hence this reduced model has many fewer sources of uncertainty (i.e. dimensions) than if the 50 points of the yield curve were 
modelled independently.  Note that PCA and the reduced model itself have no notion of time evolution.  The PCs and the output 
of the reduced model represent the same quantity at the data set analysed, being yield curves (or related quantity) in this study.  

 

 Representation of a yield curve as 50 forward rates with 1-year tenor.  This is for the USD economy at the end of Figure 1
December 2012.  Subfigure (b) shows 10000 yield curves (with lines joining the dots for clarity) at a projection 
horizon of 𝑡 = 1, obtained from the two factor Black-Karasinski model. 

 

 
Firstly we deal with some preliminary and background details, including an introduction to principal components and the intuition 
behind the associated reduced model.  In Section  3, we summarise the theory behind PCA and the mathematical methods that 
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can be employed.   Some useful data transformations are discussed in Section  4, and then Section  5 addresses the problem of how 
many PCs should be retained in a reduced model. 

Section  6 considers the inverse problem in which we are given a specific yield curve and are required to determine the magnitudes 
of the (small number of) principal components that best reproduces the yield curve.  This is arguably the most important section 
as it highlights the limitations of trying to reproduce out-of-sample yield curves, which often arise during stress testing. 

Finally, Section  7 considers some approaches that can be used to expand the universe of possible yield curves to achieve better 
reproduction of out-of-sample yield curves. 

 

2. Preliminaries 

What does a principal component look like? 
In mathematical terms, a principal component (PC) is a vector, one component for each variable.  In general these variables can 
represent anything, but for the purposes of this document we consider that the variables are the individual forward rates defining a 
yield curve.   Figure 2 shows some of the PCs obtained by applying PCA to the set of yield curves shown in  Figure 1(b).  These PCs 
are represented by 50 points, but they are shown with lines connecting the points.  The PCs are ordered so that the first PC is the 
most important in capturing variability in the yield curves, the second PC is next most important, and so on.  When used in 
practice, PCs are scaled by some real number and so the sign of the actual PC is not important. 

 

 Principal components, represented by 50 forward rates of yield curve, but shown with lines connecting the points.  Figure 2
Subfigure (a) shows the normalised form of the three most significant PCs, whilst subfigure (b) shows these scaled 
according to their significance (explained in more detail later).  The legend shows the proportion of variability 
attributed to each of the PCs. 

 

 

Intuitive interpretation 
The most intuitive way of obtaining PCs is via eigenvalue decomposition of a covariance matrix (described in detail in a later 
section).   This means we are in the world of variance and covariance, which are measures of central tendency.  Thus we are really 
talking about deviation from the mean.  Intuitively,  PCs represent ways in which the forward rates making up a yield curve can 
deviate from their mean levels.  With reference to the yield curves in  Figure 1(b), the scaled PCs portrayed in  Figure 2(b) can be 
interpreted as follows. 

The first PC (in blue in  Figure 2) represents the situation that all forward rates in the yield curve move in the same direction but 
points around the 10 year term move more than points at the shorter or longer parts of the yield curve.  This corresponds to a 
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general rise (or fall) of all of the forward rates in the yield curve, but in no way can this be called a uniform or parallel shift.  The 
impact of the first PC can be easily observed amongst the yield curves in  Figure 1(b). 

The second PC (in green in  Figure 2) represents situations in which the short end of the yield curve moves up at the same time as 
the long end moves down, or vice versa.  This is often described as a tilt in the yield curve, although in practice there is more subtle 
definition to the shape.  This reflects the particular yield curves that were used for the analysis, as well as the structural model and 
calibration that were used to create them.  The influence of the second PC is much less easy to observe amongst the yield curves 
in  Figure 1(b), where it accounts for only about 9% of the variability in the yield curves. 

The third PC is further interpreted as a higher order buckling in which the short end and long end move up at the same time as a 
region of medium term rates move down, or vice versa.  In this particular example, this type of movement is only responsible for 
about 0.31% of the variability.  This means that it might be appropriate to use two PCs in a reduced model as these should cover 
around 99% of the yield curve variability. 

 Figure 3 shows the net effect of the most important PC in explaining shifts of the forward rates in the yield curve about their mean 
values.  The solid black line is the mean yield curve at the 𝑡 = 1 projection horizon.  The broken curves result from addition or 
subtraction of an arbitrary scaling of the PC.  That is, the individual forward rates, 𝐹𝑗 (for 𝑗 = 0, … ,49, representing the forward 
rate applying for terms between 𝑗 and 𝑗 + 1 years) are: 

𝐹𝑗 = 𝜇𝑗 + 𝛼1𝑣1,𝑗 , 

where 𝜇𝑗  is the mean value of the 𝑗th forward rate at the 𝑡 = 1 projection horizon, 𝑣1,𝑗  is the 𝑗th element of the first PC, and 𝛼1 is 
a real value used to scale the first PC.  In vector notation this is: 

𝐹 = 𝜇 + 𝛼1𝑣1, 

where 𝐹 represents the entire vector of 50 forward rates making up the yield curve, 𝜇 is the entire vector of mean values of the 
forward rates at the 𝑡 = 1 projection horizon, and 𝑣1 represents the entire vector that is the first PC.  In effect this is a very simple 
reduced form model for the yield curves at the specific 𝑡 = 1 projection horizon.  Since the first PC is responsible for 91% of the 
variability of the set of yield curves used in the analysis, this reduced model can reproduce a good proportion of the yield curves of 
the full structural model.  That is, suitable values for 𝛼1 will produce yield curves that reasonably match many (but not all) of the 
yield curves of the full structural model.  The appropriate distribution of values of 𝛼1 is a byproduct of the PCA method, as will be 
shown later. 

Note that the universe of possible yield curves is a result of the shape of this first PC as well as the mean yield curve.  To expand 
the universe of possible yield curves we can simply include more PCs, as described next. 

 

 Yield curves produced by a very simple reduced form model composed of just a single PC.  The yield curves are Figure 3
defined as a deviation about the mean yield curve, which is the solid black line.  The deviation is by the addition of a 
scaled version of the first principal component to produce yield curves like those shown as broken curves. 

 

 

 

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

Term (Y)



  

 6 AUGUST 2014 

ENTERPRISE RISK SOLUTIONS 
 

PRINCIPAL COMPONENT ANALYSIS FOR YIELD CURVE MODELLING : REPRODUCTION OF OUT-OF-SAMPLE-YIELD CURVES 

PCA as a model reduction technique 
It should be noted that if we are modelling the yield curves as 50 forward rates, then the covariance matrix will be 50x50 and 
there will be 50 PCs.  These are the 50 eigenvectors produced by the eigenvalue decomposition, with the corresponding 
eigenvalues indicating the relative significance of the PCs.  A model including all of the PCs turns out to be able to reproduce any 
yield curve, realistic or not.  This concept is explored in more detail in later sections.  In particular, it can perfectly reproduce all of 
the yield curves on which the PCA analysis was performed.  Such a model should be called a full statistical model, and can be 
represented as: 

𝐹 = 𝜇 + �𝛼𝑖𝑣𝑖

𝑛

𝑖=1

, 

where 𝑛 is the number of forward rates, equal to 50 in the present example.  This can be expressed in matrix notation as: 

𝐹 = 𝜇 + 𝑽𝛼, 

where 𝑽 = [𝑣1, 𝑣2, … , 𝑣𝑛] is a square 𝑛 × 𝑛 matrix who’s columns are the PCs (i.e. the eigenvectors of the covariance matrix), and 
𝛼 = [𝛼1,𝛼2, … ,𝛼𝑛]⊤ is a vector of magnitudes of the PCs. 

It has been mentioned that the full structural model has a limited universe of yield curves, whereas the full statistical model 
presented here can reproduce any yield curve.  This means that the full statistical model is unnecessarily flexible.  As alluded to 
earlier, PCA provides a natural way of simplifying the statistical model whilst maintaining its ability to reproduce the majority of 
yield curves that can be produced by the structural model, by simply reducing the number of PCs that are used.  This reduced 
model includes only the quantity of PCs that are deemed important, as indicated by the corresponding eigenvalues.  In particular, 
we only retain those PCs that are associated with the largest eigenvalues.  The reduced model can be expressed as: 

𝐹 = 𝜇 + �𝛼𝑖𝑣𝑖

𝑘

𝑖=1

, 

where 𝑘 is the number of PCs retained.  This means that the yield curves are expressed as a linear combination of the 𝑘 PCs.  This 
can be expressed in matrix notation as: 

𝐹 = 𝜇 + 𝑽(𝒌)𝛼, 

where 𝑽(𝒌) = [𝑣1, 𝑣2, … , 𝑣𝑘] is a rectangular 𝑛 × 𝑘 matrix whos columns are the 𝑘 PCs corresponding to the largest 𝑘 
eigenvalues, and 𝛼 = [𝛼1,𝛼2, … ,𝛼𝑘]⊤ is a vector of magnitudes of the PCs. 

In a reduced model, the corresponding population or universe of possible yield curves is also reduced.  If the number of PCs is large 
enough the majority of the yield curves used in the analysis can be reproduced to a high level of accuracy.  In the modelling of 
yield curves it often suffices to retain just two or three PCs, but the appropriate number can be deduced by considering the 
eigenvalues.  This is explored in more detail in a later section. 

The PCs in such a reduced model are also sometimes called factors.  A reduced model retaining two PCs is then called a two-factor 
model, and a reduced model with three PCs is then called a three-factor model, and so on. 

In a more advanced setting, it may be advantageous to include various data transformations (such as taking logs of the forward 
rates) in the PC analysis.  The corresponding reduced model must then incorporate these data transformations.  In particular, full 
details of the transformations are required in order to properly deal with the inverse problem of decomposing a given yield curve 
into magnitudes of the PCs.  Such transformations are dealt with in a later section. 

 
 

The reduced model in perspective 
It is vital that the limitations of the reduced model are fully understood.   Figure 4 seeks to put the whole of the process of 
determining the reduced model into perspective.  Often, the sample set that is analysed in PCA is thought of as the start of the 
process, and then the reduced model is thought of as producing yield curves that “resemble those in the sample set”.  However, it 
is important to appreciate the bigger picture.  More likely is that the aim of the reduced model is to to be able to produce samples 
from the population (or universe) from which the sample set was obtained.  It is important to appreciate that the population is not 
the same as the sample set on which the PCA was performed. 
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 The entire process of determining the reduced model. Figure 4

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

WHAT IS THE POPULATION? 

The population governs what can be contained in the sample set.  In the case of yield curves, the population may also be called the 
universe of possible yield curve and could be: 

» Synthetically modelled.  This includes out put from a structural model representing yield curve dynamics, such as the output 
produced by a particular calibration of a scenario generator.  These could be yield curves produced at a given time horizon 
(such as t=1 yield curves),  yield curves produced at all time horizons, changes in yield curves over particular time intervals, 
etc.  It could be a population of yield curves in terms of forward rates, yield curves in terms of spot rates, or any other way.  
Most of the examples presented in this document fall into this category.  This type of population is likely to be infinite (or 
exceedingly large), meaning that different random number seeding can be used to produce a different sample sets from the 
same population.  Note that a different calibration of the models would result in a different population. 

» Historically inferred.  The population here could be absolute yield curves for any particular historical frequency for a given 
economy or a given set of economies.  It could also be changes in the yield curve over a particular period of time for one or 
more economies, etc.  The population could also be considered to be infinite here, despite the fact that there are only a finite 
and relatively small number of yield curves (or changes in yield curves, etc) that have been observed.  It is often forgotten that 
these observed yield curves are just a sample set from the population of yield curves that could have occurred.  Thinking of 
this population of yield curves that might have occurred is a much more subjective task, but it is one that must be addressed 
if we are to use the reduced model to predict future yield curves in a responsible way.   

HOW WELL DOES THE SAMPLE SET REPRESENT THE POPULATION? 

For synthetic sample sets this is often thought of as a task of including more and more samples from the structural model.  This 
should reduce sampling error and is usually a sufficient strategy if the population is defined to be the set of yield curves that can 
be produced by the structural model, given its particular calibration.  If the population is further widened to include any realistic 
yield curves then we should be aware of the ways in which the structural model and its calibration may deviate from reality. 

For historical sample sets, a certain amount of expert judgement should be used when considering just how well the observed set 
of yield curves matches the population of yield curves that could have occurred (or could occur in the future, if this is relevant).  A 
number of economic and financial theories could come into play, including no arbitrage principals, term premium assumptions, 
yield curve extrapolation, etc. 

Population 

Sample set 

PCA 

Full statistical model 
(retaining all PCs) 

Reduced model 
(retaining fewer PCs) 

The total population from which the 
sample set is obtained.  For the examples 
in this paper this could also be called the 

universe of possible yield curves 

The data set on which the PCA is 
performed.  For the examples presented in 
this paper this is just a set of absolute yield 

curves in terms of forward rates. 

𝐹 = 𝜇 + �𝛼𝑖𝑣𝑖

𝑛
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The full statistical (PCA) model: 

𝐹 = 𝜇 + �𝛼𝑖𝑣𝑖

𝑘

𝑖=1

 

The statistical (PCA) model with a reduced 
number, 𝑘, of PCs: 
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There are also artificial concepts that might be worth considering such as stress testing mechanisms that regulators or providers of 
best practice risk management solutions might dictate.   

There is always likely to be a difference in coverage between the population and the sample set on which the PCA is performed.  
Understanding this gap is key to understanding the limitations of what the reduced model can and cannot be used for.  This can 
also be used to inform the construction of the reduced model, concerning the number of PCs that are retained in the reduced 
model (considered in more detail in Section  5), or through selection of the sample set itself, which is the subject of Section  7.  

WHAT IF THE POPULATION CHANGES? 

If the sample set of yield curves is obtained from a structural model then the population of yield curves could easily be changed by 
a standard recalibration.  If the population of yield curves (or related quantity) does change then, in theory, the PCA should be 
repeated.  A new sample set should be obtained that represents the new population, the PCA calculations should be repeated and 
a new reduced model obtained.  In practice, the degree to which this is essential will depend on the extent to which the population 
has changed.  It is possible that the same PCs might be appropriate if the change in the population is only minor or if sufficient 
flexibility had already been build into the reduced model.  This is discussed further in Section  7. 

 
 

The inverse problem 
Mathematical literature often talks of the inverse problem as being the task of reversing the normal calculation steps.  That is, 
determining the inputs from a given output (or set of outputs).  These can be notoriously difficult problems, often due to the 
forward problem not being one-to-one.  In some cases, specific values of the output may not be achievable for any combination of 
values of the inputs.  The problem is then usually considered to be that of determining the values of the inputs that most closely 
produce the desired output values.  In other cases, the outputs may be identically the same (or the same to the level of numerical 
precision) for more than one set of input values.  The problem is then either to choose one such set of input values according to 
some criteria or to reduce the ambiguity in possible input values as much as possible.   

In the current setting, the inverse problem can be defined as the task of working backward from a given yield curve to determine 
the inputs that could be used to create it.  In terms of inputs, we can reasonably consider that the model structure (that is, the 
form of the structural model or the number of PCs in the reduced model) and calibration parameters are known and fixed.  Hence, 
it is only the random samples in the structural models or the PC magnitudes of the statistical models that are to 
determined.   Figure 5 shows this schematically. 

There are a number of things that need to be considered when dealing with the inverse problem.  Firstly, we need to understand 
the universe of yield curves that can possibly be produced by the particular model.  Secondly, we need to consider the difficulty (in 
terms of speed and robustness) of any calculation methods.  On both of these counts it will be shown that the statistical/reduced 
models that make use of PCA have distinct advantages.  This is explored in more detail in Sections  6 and  7. 

 

 Schematic of the forward problem and the inverse problem. Figure 5
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𝐹 = 𝜇 + �𝛼𝑖𝑣𝑖
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3. Steps to generate the principal components 

This section describes how to determine a set of PCs that are appropriate to represent a given structural model.  This section also 
explains how to determine the number of PCs that should be retained when constructing a reduced model. 

In terms of calculations there are two main ways that PCs can be determined: using eigenvalue decomposition; and using singular 
value decomposition.  In this section we concentrate on the simple case of applying PCA to yield curves that have not been 
transformed in any way, but mention where extensions can be made.  These extensions are considered in more detail in later 
sections. 

Using the covariance matrix 
This method requires us to determine a covariance matrix describing the movement in the points in the yield curve and then 
performing eigenvalue decomposition (diagonalisation) or singular value decomposition of this covariance matrix.   

1. Generate a set of yield curves (in terms of forward rates) from the structural model.  Construct a data matrix of forward 
rates: 

𝑭 = �𝐹𝑖𝑗�, 

where 𝐹𝑖𝑗  is the 𝑗th forward rate of the 𝑖th yield curve.  That is, each row of the matrix 𝑭 is a yield curve and each column 
is a set of values of a particular forward rate. 

2. Transform the values in the data matrix as desired (all optional).  See later description.  Note that the transformations 
here need to be taken into account when the inverse problem of determining PC magnitudes that best match a yield 
curve is tackled. 

3. Centre and scale the data matrix if desired: 

a. Subtract the mean of each of the forward rates to obtain data that has zero mean. 

b. Subtract the mean and then divide by the standard deviation of the forward rates, to obtain data that has zero 
mean and standard deviation of 1.0. 

4. Calculate a matrix of covariances between the (possibly transformed, centred and/or scaled) forward rates 

𝑪 = 𝐶𝑜𝑣(𝑭), 

where this is interpreted as a matrix of covariances of pairs of columns.  Note that if the data has mean of zero and 
standard deviation of 1.0 this will also be the correlation matrix. 

5. Compute the eigenvalue decomposition or singular value decomposition, with eigenvalues or singular values in 
decreasing order.  The eigenvalue decomposition is: 

𝑪 = 𝑽𝚲𝑽⊤, 

where 𝑽 is an orthonormal matrix and 𝚲 is a diagonal matrix.  See  0 for more details of the eigenvalue decomposition. 

The singular value decomposition is: 

𝑪 = 𝑼𝑺𝑽⊤, 

where 𝑺 is a diagonal matrix and 𝑼 and 𝑽 are orthonormal matrices that will be identical (to machine precision) since the 
covariance matrix is positive semidefinite.  See  Appendix B and  Appendix C for more details of the singular value 
decomposition. 

In both cases, the columns of 𝑽 are normalised eigenvectors 𝑣𝑖 .  These are the principal components that we seek. 

6. The significance, 𝜓𝑖 , of each principal component is given by: 

𝜓𝑖 =
𝜆𝑖

∑ 𝜆𝑗𝑛
𝑗=1

,         or         𝜓𝑖 =
𝑠𝑖

∑ 𝑠𝑗𝑛
𝑗=1

. 
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where 𝜆𝑖 are the diagonal elements of the diagonal matrix 𝚲, and 𝑠𝑖 are the diagonal elements of the diagonal matrix 𝑺.  
This provides information as to how many PCs are required in order to capture the range of yield curves that the 
underlying model can produce.  See Section  5 for more details. 

7. (Optional) Compute the mean of each forward rate.  This mean does not affect the covariance matrix since, by definition, 
the covariance is a measure of the joint deviation from the mean values.  Hence it will not affect the PCs that are 
obtained.  However, this vector of mean values is needed to be known if the inverse problem is to be solved.  That is, if a 
yield curve is to be decomposed into principal components.  Any drift governed by the underlying model structure is 
captured in this mean, as is the roll forward of the yield curve due to time evolution. 

 

Using singular value decomposition on the raw data matrix 
The method outlined here applies singular value decomposition (SVD) to the raw data value matrix (not a covariance or 
correlation matrix).  There is no need to explicitly determine the covariance/correlation matrix if this is not otherwise required, but 
this also means that mean shifting is significant here. 

The steps to obtain the PCs using singular value decomposition (SVD) are similar to those outlined above. 

1. Follow step  1 from the eigenvalue decomposition approach outlined above. 

2. Follow step  2 from the eigenvalue decomposition approach outlined above. 

3. Centre the data and scale if desired: 

a. Subtract the mean of each of the forward rates to obtain data that has zero mean.  Note this was not required 
when using decomposition of the covariance matrix, but makes a material difference here. 

b. Subtract the mean and then divide by the standard deviation of the forward rates, to obtain data that has zero 
mean and standard deviation of 1.0. 

4. Compute the singular value decomposition on the (possibly transformed, centred and scaled) matrix F: 

𝑭 = 𝑼𝑺𝑽⊤ 

See  Appendix B for more details of the singular value decomposition.  As before, the columns of 𝑉 are the principal 
components in normalised form.  Here these are the eigenvectors 𝑣𝑖 of 𝑭⊤𝑭.  Note that when the columns of 𝑭 have 
mean of zero then 𝑭⊤𝑭 = 𝐶𝑜𝑣(𝑭) and hence the principal components will be the same as before. 

5. The proportion of variance explained by each PC, 𝜓𝑖 , is given by 

𝜓𝑖 =
�𝑠𝑖

∑ �𝑠𝑗𝑛
𝑗=1

. 

This provides information as to how many PCs are required in order to capture the range of yield curves that the 
underlying model can produce. 

 

Comparison 
There are more details on the ins and outs of eigenvalue decomposition and singular value decomposition in  0,  Appendix B 
and  Appendix C.  All approaches will produce the same results in many cases.  Using the eigenvalue decomposition is usually the 
most intuitive of the approaches and is easier computationally, despite the need to compute the covariance matrix.  One 
advantage of SVD is that it is more accurate in difficult numerical cases and is the preferred approach for PCA tools implemented 
in some commercial numerical packages such as matlab. 

The application of SVD directly to the data matrix, 𝑭, is computationally the most expensive but it may also be the most accurate.  
This matrix may have many more rows than columns, since it is common to perform the analysis on 1000 or 10000 or more yield 
curves, which may each be modelled with around 50 forward rates.  Eigenvalue decomposition performed on a 50x50 covariance 
matrix is usually much quicker than SVD performed on a 1000x50 matrix. 

In many cases, the covariance matrix may have a very large condition number, indicating that the matrix is nearly singular.  In the 
examples presented in this document the covariance matrix often had a condition number of ∼ 1018.  If the covariance matrix is 
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going to end up in this condition, it might be best to use SVD directly on the data matrix, especially if PCs of lesser importance are 
to be obtained with good accuracy. 

Another point to note is that mean centring should always be performed when using SVD directly on the data matrix 𝑭,  whereas 
this is not necessary when covariance matrix methods are used. 

 

4. Data transformations 

Mean centring and scaling 
Some text book descriptions include a mean centring of the data and then a scaling of the data before attempting PCA.  
Depending on the nature of the problem and the way it is to be solved, these may or may not be essential. 

Mean centring is literally the subtraction of the average (of each forward rate) from the data values so that the new mean value is 
zero.  As mentioned earlier, mean centring is crucial when the SVD approach is used but is not necessary when eigenvalue 
decomposition is used. 

Scaling then involves dividing the data by the standard deviation (of each forward rate) so that the standard deviation of the new 
data is 1.0.  Scaling is particularly useful if the variables have quite different orders of magnitude, although this is not likely to be 
the case for yield curves.  If both centring and scaling are performed then the covariance matrix is the same as the correlation 
matrix.  Note that we then need to reverse these transformations (i.e. scale by standard deviation of the original data and add on 
the mean of the original data) in order to recreate any of the original yield curves. 

More general transformations 
Since PCA is a purely statistical technique, you can transform the data in almost any way and still successfully apply the technique.  
The inverse transformation is required for the inverse problem of determining the magnitudes of PCs that produce the best fit to a 
given yield curve.  Some transforms may mean that the reduced model allows negative interest rates or other undesirable features. 

Let 𝑇(⋅) be a transformation function that can be applied to the forward rates in the data matrix.  PCA is then performed on the 
transformed data and the final equation for the reduced model is as follows: 

𝐹 = 𝑇−1 �𝜇 + �𝛼𝑖𝑣𝑖
𝑖

�, 

where 𝐹 represents the entire vector of transformed data points, 𝜇 is the entire vector of mean values of the transformed data, 𝑣𝑖 
represents the entire vector of the 𝑖th PC, and 𝛼𝑖 is an appropriate scaling of the 𝑖th PC.  In matrix notation this is: 

𝐹 = 𝑇−1�𝜇 + 𝑽(𝒌)𝛼�, 

where 𝑽(𝒌) = [𝑣1, 𝑣2, … , 𝑣𝑘] is a rectangular 𝑛 × 𝑘 matrix whos columns are the 𝑘 PCs corresponding to the largest 𝑘 
eigenvalues, and 𝛼 = [𝛼1,𝛼2, … ,𝛼𝑘]⊤ is a vector of magnitudes of the PCs. 

Some useful transformations are: 

» General scaling.  If the raw data is a set of possible yield curves at some time horizon, it might be meaningful to scale by the 
initial (𝑡 = 0) yield curve to get relative movements.  The PCs would then represent proportional changes in the yield curve 
over the given time interval. 

𝑇(𝐹) =
𝐹
𝐹0

, 

where 𝐹0 is the vector of forward rates representing the initial yield curve (𝑡 = 0).  The reduced model is then:  

𝐹 = 𝐹0. �𝜇 + 𝑽(𝒌)𝛼� 

» Logarithmic transformation.  Some structural models for nominal yield curves, such as the two factor Black-Karasinski and 
LMM models, have a lognormal structure in order to prevent negative interest rates.  Without special treatment, there is 
nothing preventing some of the forward rates from a reduced model being negative, since the scale parameters 𝛼 can take 
any real value, including dramatically negative values.  One common way to prevent negative interest rates being produced 
from a reduced model is to use a logarithmic transformation of the raw yield curve data before performing PCA.  The 
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transformed data can take any real value, but when transformed back to actual forward rates it is theoretically impossible to 
get negative rates.  The transformation function is: 

𝑇(𝐹) = ln(F). 

This means that the reduced model would be: 

𝐹 = exp�𝜇 + 𝑽(𝒌)𝛼� 

Clearly, the forward rates that result from this reduced model can never be negative, for any real PCs and for any real values 
of 𝛼. 

» Displaced logarithmic transformation.  This is another useful transformation that is specifically suited to the LMM Plus model.  
The LMM Plus model features a displacement of the forward rates which has the effect of shifting the yield curve downwards.  
This means that the resulting forward rates can be as negative as the (positive) displacement parameter, and so a plain log 
transform will break down.  However, the displaced forward rates from the LMM Plus models are lognormally distributed, and 
so the following transform can be used: 

𝑇(𝐹) = ln(𝐹 + 𝛿), 

with associated reduced model: 

𝐹 = −𝛿 + exp�𝜇 + 𝑽(𝒌)𝛼�. 

Clearly, the forward rates that result from this reduced model can never be more negative than −𝛿, for any real PCs and for 
any real values of 𝛼. 

 

An example 
The following example illustrates some of the benefits of using transformations.  Consider the use of a logarithmic transformation 
and mean centring during the PCA on the same set of yield curves as appear in  Figure 1(b).  The transformed yield curves are 
shown in  Figure 6(a).  Note that the general shape of the data is more generic and more symmetric, and hence less resembles the 
lognormal distribution usually associated with the two factor Black-Karasinski model.  The three largest associated PCs are shown 
in  Figure 6(b), including the details of the proportion of variability attributable to each of the PCs. 

Compared with the non-transformed PCs shown in  Figure 2(b), the transformations have shifted some importance from the first 
PC to the second PC.  Now only around 71% of the variability can be obtained using a reduced model with only a single PC.  
However the important thing here is that the importance of the third PC has decreased from 0.31% to 0.017%.  This means that a 
greater proportion of the variability in the yield curves can be explained by using a reduced model with two PCs, something over 
99.9%. 

 The transformed yield curves corresponding to the example using the two factor Black-Karasinski model presented Figure 6
in  Figure 1(b).  The corresponding (scaled) PCs are also shown, along with proportion of variability attributable to 
each PC, which can be directly compared with the results in  Figure 2(b). 
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5. How many PCs to include in a reduced model 

The question of just how many PCs should be retained in a reduced model is common.  It has been mentioned before that if we 
retain all of the PCs then we can exactly reproduce all of the yield curves on which the PCA was performed.  Note that this set of 
yield curves is only a sample set obtained from the infinite population of yield curves that the structural model can produce.  This 
means that it is possible that the full structural model can produce a yield curve (that was not in the set of yield curves on which 
PCA was applied) that the reduced model cannot exactly reproduce, even with all of the PCs. 

The more PCs are retained the more accurately the reduced model will be able to reproduce the yield curves on which the PCA 
was performed.  In some cases it may be important to allow flexibility to be able to fit yield curves that were not in the set of yield 
curves on which the PCA was performed.  This might also include perturbed or stressed yield curves that cannot even be produced 
by the full structural model.  Hence we may decide to retain a relatively large number of PCs.  However, with more PCs comes 
more complexity which may cause problems in systems in which the reduced models are to be used.  In some cases it is desirable 
to retain the smallest number of PCs that can reasonably approximate most of the yield curves.  It is important to be aware of the 
trade-off between the number of PCs that are retained and the ability to reproduce yield curves to a given accuracy. 

As mentioned in Section  3, the proportion of variance explained by each principal component is given by: 

𝜓𝑖 =
𝜆𝑖

∑ 𝜆𝑗𝑛
𝑗=1

         or         𝜓𝑖 =
𝑠𝑖

∑ 𝑠𝑗𝑛
𝑗=1

, 

when eigenvalue or singular value decomposition is performed on the covariance matrix.  Alternatively, 

𝜓𝑖 =
�𝑠𝑖

∑ �𝑠𝑗𝑛
𝑗=1

, 

when singular value decomposition is applied to the raw data matrix.  These expressions come about because of the properties of 
the matrix decompositions that are used.  In the case of the eigenvalue decomposition approach, the decomposition is performed 
on the covariance matrix.  Since the eigenvectors are orthogonal and normalised, the eigenvalues are then measures of the 
variance of the corresponding forward rate in a coordinate system in which the transformed forward rates are independent (See  0 
for more details of the interpretation of the eigenvalue decomposition).  This means that the denominator in the expressions 
above represents the total variance (i.e. the sum of the variances of independent variables), and then 𝜓𝑖  is the proportion of the 
total variance attributed to the 𝑖th PC. 

The variance of the reduced model as a proportion of the variance of the set of yield curves that were analysed is given by the 
cumulative sum of the expressions above for each PC in the model.  That is: 

�𝜓𝑖

𝑘

𝑖=1

, 

where 𝑘 is the number of PCs included in the reduced model, keeping in mind that the PCs are included in the reduced model in 
order of decreasing eigenvalue (or singular value).  That is, PCs associated with the largest eigenvalues are included before PCs 
corresponding to smaller eigenvalues.  Hence, based on this measure, there is diminishing worth in retaining more and more PCs in 
the reduced model.   

The number of PCs in the reduced model should be such that the expression above is close to 1.0, meaning that almost 100% of 
the variance is covered.  In some cases it might be sufficient that 95% of the variance is covered, but in other applications a higher 
degree of coverage might be required.  

It is worth remembering that these measures of variability (and hence 𝜓𝑖) are only with-respect-to the set of yield curves on which 
the PCA was performed.  If this set does not sufficiently represent the population or universe of yield curves of interest (as outlined 
in Section  2), then using the criteria outlined above may not be appropriate.  This is particularly evident when the sample set 
consists of historically observed yield curves, since the notion of population is a bit more subjective in this case.  But it is also an 
issue for sample sets produced from structural models when the population changes or when we wish the reduced model to be 
able to reproduce yield curves that are vastly different from those in the sample set.  This is the subject of Section  7. 

Another way to consider how many PCs should be retained in the reduced model is to consider scores.   

  



  

 14 AUGUST 2014 

ENTERPRISE RISK SOLUTIONS 
 

PRINCIPAL COMPONENT ANALYSIS FOR YIELD CURVE MODELLING : REPRODUCTION OF OUT-OF-SAMPLE-YIELD CURVES 

SCORES 

Scores are the magnitudes of the PCs that are required to fit each yield curve in a particular set.  Most often this set is the original 
set of yield curves on which the PCA is performed, but the concept can be extended to slightly different sets.  For a given set of 
yield curves, the scores can be determined by solving the inverse problem.  Since the PCs are orthogonal this is not a difficult task, 
and is described in detail in Section  6. 

The following example includes some distributions of scores, and the process is further examined in Section  7 using another 
specific example. 

 

An example 
Continuing the example of the yield curves obtained from the two factor Black-Karasinski model, the proportion of the variance 
attributable to each of the first four PCs is shown in  Table 1.  PCs obtained from ordinary PCA (as portrayed in  Figure 2(b)), and PCs 
using log transformed and mean centred PCA (as portrayed in  Figure 6(b)) are included separately.  The cumulative proportion of 
variance for a reduced model containing the specified number of PCs is also shown for the two cases.  In both cases, a great 
proportion of the variance is reproducible if two PCs are included in the reduced model.  This is expected since the full structural 
model is a two factor model.  The proportion covered by the log transformed PCs is larger (except for the reduced model with only 
a single PC), highlighting the benefits of the log transform in this example.  Note that, in terms of variance coverage for this 
particular set of yield curves, it would even be better to use the log transformed model with two PCs (99.98%) than the non-
transformed model with three PCs (99.93%). 

 0(a) shows the distribution of scores for the first 15 PCs for the log transformed case.  For each PC, the edges of the box signify the 
25th percentile and 75th percentile of the distribution and the red central line is the median.  The whiskers extend 1.5 times the 
interquartile range either side of the box, and outliers (marked with black dots) are any points lying outside the whiskers.  This tells 
us that there is significant requirement for the first two PCs and only very tiny need for any other PC.   0(b) shows a histogram of 
the distribution of magnitudes of the first PC, giving a more complete view of the distributional form. 

As has been previsouly mentioned, care should be taken when using these criteria to determine the number of PCs to retain since 
they are only measured against the set of yield curves on which the PCA was performed, rather than the full population or universe 
of yield curves that the full structural model can produce.  The indicative number of PCs should only be considered as a minimum.  
To ensure that the indicated number of PCs here is more meaningful the set of yield curves should be quite large.  Additional PCs 
can be included in the reduce model, in order to build in some flexibility to reproduce a wider universe of yield curves if desired.  
The ideas behind this concept are extended in the Section  7. 

 

Table 1 The proportion of the variability that can be explained by the first four PCs, for the example of the yield curves 
obtained from the two factor Black-Karasinski model.  PCs obtained from ordinary PCA (as portrayed in  Figure 
2(b)), and PCs using log transformed and mean centred PCA (as portrayed in  Figure 6(b)) are included. 

 Ordinary PCA Log transformed and mean centred PCA 

PC # Proportion of variance 
attributable to this PC 

Cumulative proportion of 
variance including this PC 

Proportion of variance 
attributable to this PC 

Cumulative proportion of 
variance including this PC 

1 91.36% 91.36% 71.26% 71.26% 

2 8.25% 99.61% 28.72% 99.98% 

3 0.31% 99.93% 0.017% 99.998% 

4 0.0659% 99.996% 0.00146% 99.9998% 
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 Scores of the log transformed and mean centred PCA for the example of the yield curves obtained from the two Figure 7
factor Black-Karasinski model.  Subfigure (a) portrays a box plot showing the distribution of scores of the first 15 
PCs.  For each PC, the edges of the box signify the 25th percentile and 75th percentile of the distribution and the red 
central line is the median.  The whiskers extend 1.5 times the interquartile range either side of the box, and outliers 
(marked with black dots) are any points lying outside the whiskers.   Subfigure (b) shows a histogram of the 
distribution of magnitudes for PC #1. 

 

 

6. The inverse problem: Decomposing a yield curve into principal components 
This section deals with the problem of decomposing a given yield curve into an approximate weighted sum of a given set of PCs.  
This is a fairly common requirement that comes about when a reduced form model is used in practice.  For example, when risk 
drivers for a proxy function are chosen to be magnitudes of a set of PCs, the magnitudes of these PCs need to be determined from 
a specific yield curve when the proxy function is to be evaluated.  These magnitudes are also known as scores. 

It was mentioned earlier that the full statistical model with all PCs can reproduce any yield curve.  The magnitudes of the PCs that 
can be used to exactly match a given yield curve can be determined by a simple matrix multiplication.  When the model has been 
reduced to only utilise a smaller number of PCs the universe of possible yield curves is also reduced.  This means that there are 
some yield curves that cannot be reproduced exactly.  In this case we are really seeking the magnitudes of the retained PCs that 
best fit the yield curve in some sense.  The same matrix multiplication naturally provides the best fit in the transformed domain in 
a least squares sense.  Note that no numerical optimisation is necessary to find the best fit for any yield curve. 

The task is to find the vector 𝛼 that solves the equation 𝐹 = 𝜇 + 𝑽(𝒌)𝛼.  This can be obtained analytically as follows: 

𝛼 = 𝑽(𝒌)−1. (𝐹 − 𝜇) = 𝑽(𝒌)⊤. (𝐹 − 𝜇), 

since the orthogonality property of the eigenvalue matrix means that 𝑽(𝒌)−1 = 𝑽(𝒌)⊤. 

When a data transformation is being used the solution becomes: 

𝛼 = 𝑽(𝒌)⊤. (𝑇(𝐹) − 𝜇), 

where 𝜇 is to be interpreted as the mean value of the transformed data rather than the raw data. 

An example 
In terms of an example, consider the reproduction of yield curves using the reduced model obtained from the 10000 yield curves 
obtained from the two factor Black-Karasinski model.  The PCA is used with a log transform and mean centring and so the PCs are 
those shown in  Figure 6(b).   Figure 8 shows the resulting fit to some of the yield curves using the reduced model with two PCs.  
the first and fourth yield curves are shown in  Figure 8(a) and are typical of the fit to the majority of the yield curves that were used 
to determine the PCs.  However, since the proportion of variance covered by these two PCs is only 99.98% (see  Table 1), the fit to 
some of the more extreme yield curves is not so quite so good. Yield curves 685 and 988 were identified as particularly extreme 
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examples, and their reproduction is shown in  Figure 8(b).  Note the slight discrepancy occurring between the 5 year and 10 year 
points for these particular yield curves. 

 

 Reproduction of yield curves using a reduced model with two PCs.  The majority of the yield curves are reproduced Figure 8
with very good accuracy, such as yield curves 1 and 4 in subfigure(a).  However there are a few of the more extreme 
yield curves in which there is a significant deviation such as yield curves 685 and 988 from the set of 10000 yield 
curves from the two factor Black-Karasinski model.  The PCs use here are those obtained from the log 
transformation presented in  Figure 6(b). 

 

7. Expanding the universe of yield curves 

In this section we consider an example based on a simple yield curve stress that highlights one important aspect of the tradeoff 
between the number of PCs in the reduced model and the entire population or universe of yield curves that can be reproduced.  
The reproduction of out-of-sample yield curves (i.e. those that were not used in the analysis to derive the PCs) is shown to require 
many more PCs than we might first think.  It is then shown that if we can anticipate the stresses that might commonly be applied 
in practice, there is a simple way to obtain PCs that expand the universe of yield curves to include these stresses.  This approach is 
shown to reduce the number of PCs required to reproduce these stressed yield curves. 

The 100 basis point parallel stress 
Consider the problem of reproducing a yield curve that has been stressed by the addition of 100 basis points uniformly across the 
entire term structure.  To be specific, we will consider the first yield curve generated by the two factor Black-Karasinski model as 
shown in  Figure 8(a).  We use the same reduced model with two PCs as was used in the previous section, using the PCs shown 
in  Figure 6(b).  Note that this stressed yield curve was not in the original set of yield curves that the (transformed) PCA was 
performed on.  In this regard, this stressed yield curve should be considered to be an out-of-sample yield curve. 

 Figure 9(a) shows the best fit using the reduced model with two PCs.  Clearly this is a very poor reproduction.  This comes about 
because the stressed yield curve is not in the universe of yield curves that the reduced model with two PCs can reproduce.  It is 
then natural to consider expanding the reduced model to include another PC, in the hope that the expanded universe of yield 
curves includes one that closely matches the stressed yield curve we are targeting. 

With three PCs we see a dramatic improvement to the fit, as shown in  Figure 9(b), but this would still not reasonably be 
considered good enough for many applications.  Adding more and more PCs to the reduced model progressively helps the fit, but 
there are still significant deviations when even eight PCs are used ( Figure 9(c)).  A reasonable fit across the entire term structure is 
only achieved when nine PCs are retained in the reduced model, as shown in  Figure 9(d).   

 Figure 10(a) shows the magnitudes of the PCs that are required to best fit this stressed yield curve.   Figure 10(b) shows the same 
information for 100 basis point stresses of each of the 10000 original yield curves.  Clearly the majority of these stressed yield 
curves require nine PCs in the reduced model for good reproduction.   

The prime reason that as many as nine PCs are required to reproduced the stressed yield curves is that the PCs were obtained via 
an analysis method that had no knowledge of such stresses.  That is, these PCs are not fit for the purpose of reproducing yield 
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curves stressed in this way.  One way to improve the situation might be to provide such information when the PCs are being 
derived. 

 Reproduction of yield curves that have had a 100 basis point (additive) parallel stress applied, using a reduced Figure 9
model with different quantities of PCs.  The PCs use here are those obtained from the log transformation presented 
in  Figure 6(b). 

 

 

 

 The magnitudes of the PCs that are required to best fit 100 basis point uniform stressed to the yield curves studied Figure 10
earlier.  For the box plot in subfigure (b), the edges of the boxes signify the 25th percentile and 75th percentile of the 
distribution and the red central line is the median.  The whiskers extend 1.5 times the interquartile range either side 
of the box, and outliers (marked with black dots) are any points lying outside the whiskers. 
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Incorporating stresses into the reduced model 
If the general nature of the perturbations or stresses that might be required in practice can be anticipated, it is possible to include 
this information into the PCs.  Depending on the actual form of the perturbation, this could be done either: 

» treating it as being separate from the PCA, which would usually mean that it is defined in the original yield curve domain; or 

» as a part of the PCA, either in the original yield curve domain or in the transformed domain. 

The simple case of a parallel stress could be dealt with either as part of the PCA or as being separate from the PCA.  Treating it 
separate from the PCA, a simple additive shift in the reduced model will achieve the desired effect.  For example, for the log 
transformed reduced model, might look like the following: 

𝐹 = exp�𝜇 + 𝑽(𝒌)𝛼� + 𝛿, 

where 𝛿 is a scalar.  This would mean that the universe of possible yield curves would be that of the (transformed) reduced model, 
governed by the PCs that it retains, as well as any parallel shift of such yield curves.  Determination of magnitudes of the PCs and 
𝛿 for a given yield curve might then be more difficult and might best be done via a numerical optimiser.  Note also that this 
approach might detract from some of the advantages of the log transformation, such as the assurance that the entire yield curve 
cannot go negative. 

In many cases, stresses might more naturally be incorporated directly into the PCA.  This is as simple as applying the anticipated 
stresses to the original yield curves and performing PCA on the expanded set of yield curves.  This does not require much more 
calculation when the eigenvalue decomposition approach is used since the dimensions of the covariance matrix will still just be 
𝑛 × 𝑛 (reflecting the granularity with which we are representing the yield curves).  The PCs obtained will be able to reproduce the 
original yield curves as well as the stressed yield curves using an optimal number of PCs. 

It turns out that the stresses need only to be defined in quite general terms.  For example, the PCs obtained using a notional 
parallel stress of 100 basis points will serve for a reasonably wide range of parallel stress magnitudes. 

Whilst we have only considered a very simple stress here, the technique for expanding the universe of yield curves can be 
generalised to more complex perturbations such as “short end down, long end up”, “short end up, long end down”, etc. 

 

An example 
The original set of yield curves shown in  Figure 1(b) have been put together with the set of corresponding yield curves stressed by 
100 basis points to create a super set.  PCA has been performed on this super set to obtain new PCs.  These new PCs are shown 
in  Figure 11 in both normalized and scaled form.  Note that these PCs are slightly different from those obtained earlier (see  Figure 
6(b)).  There are distinct similarities in the first two PCs,  but the importance of the third PC has increased.  Note that since there 
are now at least three PCs of significance, it is likely that there has been a sacrifice to the fits of the original yield curves.  That is, it 
should be appreciated that two PCs will no longer be sufficient for a good reproduction of the original yield curves.  

Reproduction of some of the original yield curves is shown in  Figure 12, allowing us to consider the extent to which the new PCs 
have degraded the fits.  As expected, reproduction of the typical yield curves in  Figure 12(a) with two PCs is far from satisfactory.  
The same two typical yield curves are shown with a more reasonable fit using three PCs in  Figure 12(b).  Hence, we would expect 
that at least three of these new PCs would be required to fit the more extreme of the original yield curves.  The two extreme yield 
curves examined earlier ( Figure 8(b)) are considered again in  Figure 12(c) and (d), along with fits using three and four PCs.  The fit 
using three PCs is not so bad but  might be considered unreasonable for some applications.  The fit using four PCs is much better 
but, as in  Figure 8(b), there is still a small part of the term structure over which there is a slight discrepancy. 

Reproduction of the stressed yield curve considered earlier is examined in  Figure 13.  The fit using three PCs is not so bad but there 
are still small parts of the term structure over which there is a slight discrepancy.  The fit using four PCs is much better.  These can 
be compared with those shown in  Figure 9, where it was seen that as many as nine PCs were required. 

Widening the scope to include all of the yield curves in the super set,  Figure 14 shows the PC magnitudes that are required to 
reproduce all of the yield curves, original or stressed.  Note that there are very few yield curves requiring a significant magnitude of 
the fourth PC, and even less requiring a fifth.  This is a reflection of the proportion of variability explained by the fourth and fifth 
being quite insignificant, as shown in  Figure 11(b), and in stark contrast to the nine PCs required for the out-of-sample stressed 
yield curve examined in  Figure 9 and  Figure 10. 
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 Principal components obtained from a super set containing the original yield curves as well as a stressed copy of the Figure 11
yield curves.  The stress applied here is a 100bp (additive) parallel shift. 

 

 

 Reproduction of original yield curves using new PCs obtained from the super set of original and stressed yield Figure 12
curves.  These can be compared with those shown in  Figure 8. 
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 Reproduction of a stressed yield curve using new PCs obtained from the super set of original and stressed yield Figure 13
curves.  These can be compared with those shown in  Figure 9. 

 

 

 Box plot showing the magnitudes of the new PCs that are required to best fit each yield curve in the superset of Figure 14
original and stressed yield curves.  For each PC, the edges of the box signify the 25th percentile and 75th percentile of 
the distribution and the red central line is the median.  The whiskers extend 1.5 times the interquartile range either 
side of the box, and outliers (marked with black dots) are any points lying outside the whiskers.  This can be 
compared to  Figure 10(b). 
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8. Conclusions 

This document has presented the basics of PCA as well as some more advanced concepts.  PCA has been presented as a tool 
through which a full structural model can be approximated by a simpler statistical model referred to as a reduced model.  We have 
strived to be clear about the association between PCs, the associated reduced model, and the universe of yield curves that it can 
reproduce. 

Specific techniques for PCA have been explored including eigenvalue decomposition and singular value decomposition, as well as 
transformations that are useful in some cases, such as for preventing negative interest rates. 

The problem of how to choose an appropriate number of PCs for a reduced model has been specifically addressed and, in the naïve 
use case, it has been shown to depend on the sizes of the associated eigenvalues of the covariance matrix.  More correctly it 
depends on the desired use of the reduced model, meaning the population or universe of yield curves that we wish to be able to 
reproduce. 

One important conclusion is that there is a direct relationship between the number of PCs retained in the reduced model and the 
quality of yield curve reproduction.  But often the whole purpose of using PCA is to reduce the model to be as simple as possible 
and often there are strong disadvantages in having to deal with more PCs.  This means there is a tradeoff between the number of 
PCs in the reduced model and the universe of yield curves that can be reproduced. 

Another important conclusion is that there is a simple analytic expression for solving the inverse problem of determining the PC 
magnitudes that best represent a given yield curve.  This means that numerical optimisation is not required, either for yield curves 
that were used to derive the PCs or for any out-of-sample yield curve. 

The reproduction of out-of-sample yield curves (to reasonable accuracy over the entire term structure) can sometimes require 
many more PCs than yield curves from which the PCs were obtained.  The simple case of a 100 basis point parallel (additive) stress 
of a yield curve was examined in detail and shown to require nine PCs for sufficient reproduction, whereas most of the in-sample 
yield curves only required two PCs.  A few methods were proposed to lessen the burden of using many more PCs to reproduce 
out-of-sample yield curves.  The most general technique involved anticipating the types of out-of-sample stresses/perturbations 
that might be required, and expanding the set of yield curves on which the PCA was performed to include stressed yield curves.  In 
the case of the 100 basis point additive stress, this approach was shown to reduce the number of PCs required to reproduce the 
number of PCs from nine down to just three or four, depending on the accuracy required. 

In summary, it is not always safe to assume that a two-factor interest rate model means that only two PCs are required or that a 
three-factor interest rate model means that only three PCs are required.  The actual number of PCs required depends on the 
desired usage of the reduced model in terms of what yield curves can be reproduced.  The danger is that two or three PCs are used 
in a model and people rely on these being sufficient to accurately model yield curve stresses, such as a 100bps parallel shift. 
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 Eigenvalues, eigenvectors and the eigenvalue decomposition Appendix A
If 𝐴 is a square matrix, the eigenvectors of 𝐴 are the non-zero vectors 𝑣 that satisfy: 

𝐴𝑣 = 𝜆𝑣, 

where 𝜆 is a scalar associated with 𝑣.  That is, matrix multiplication of the eigenvector is equivalent to a scalar multiplication, with 
the scale factor being called the eigenvalue.  An eigenvector corresponds to a particular eigenvalue, and the pair are specific to the 
matrix 𝐴.  If 𝐴 is a 𝑛 x 𝑛 matrix then it has 𝑛 eigenvectors (and corresponding eigenvalues) and these eigenvectors are 
orthonormal, meaning that they are orthogonal and have unit length.  In the special case in which the matrix 𝐴 is real and 
symmetric, the eigenvalues are all real.   

Augmenting the 𝑛 eigenvectors into a column matrix, 𝑉, and putting the corresponding eigenvalues on the diagonal of a diagonal 
matrix Λ we get the following matrix equation: 

𝐴𝑉 = 𝑉Λ 

The orthogonality of the eigenvectors means that 𝑉⊤𝑉 = 𝑉𝑉⊤ = 𝐼 and hence 𝑉−1 = 𝑉⊤.  When 𝑉 is invertible this leads to the 
eigenvalue decomposition: 

𝐴 = 𝑉Λ𝑉𝑇 . 

This can be expanded to express the matrix 𝐴 as a summation as follows: 

𝐴 = �𝜆𝑖𝑣𝑖𝑣𝑖⊤
𝑛

𝑖=1

 

This summation proves to be particularly useful representation in the context of PCA as it clearly indicates that the effect of 
eigenvectors diminishes with the size of the eigenvalue.  The basis of PCA is that the matrix 𝐴 can be approximated using only 
those eigenvectors corresponding to significantly large eigenvalues.  In some situations this can mean that just a small number of 
eigenvectors can be used to represent a system with many tens or hundreds of dimensions. 

In terms of interpretation, the eigenvector matrix 𝑉 represents a transformation onto orthogonal dimensions that explain 
maximum variability.  That is, the eigenvector, 𝑣1, corresponding to the largest eigenvalue, 𝜆1, will point in the direction of 
greatest variability.  The second eigenvector, 𝑣2, will point in the direction of greatest variability subject to the condition that it 
must be orthogonal to the 𝑣1.  The third eigenvector, 𝑣3, will point in the direction of greatest variability subject to being 
orthogonal to both 𝑣1 and 𝑣2, and so on.  This is explained in more detail in the simple example below. 

This transformation (change of basis, or change of coordinates) so that all the points are represented as a linear combination of 
the eigenvectors 𝑣1, 𝑣2 and 𝑣3 can be performed by (left) multiplying the data points by 𝑉⊤.  That is, if an existing point is 
𝑥 = [𝑥1,𝑥2, … , 𝑥𝑛]⊤ then its representation in the new coordinate system is �̅� = 𝑉⊤𝑥.  The values in this new coordinate system 
are the scores.  That is, they are the magnitudes of the eigenvectors that reproduce the original data. 

In matrix form this is 

𝑋� = 𝑉⊤𝑋 

The elements of �̅� (in the new coordinate system) are independent.  The covariance matrix is Λ and hence is diagonal.  This means 
that all covariances are zero and the variance of each variable is 𝜆𝑖 .  The total variance is the sum of the eigenvalues and this is also 
the total variance of the original data. 

An example 
Consider the simple example of three variables with normally distributed random samples that are correlated according to the 
following correlation matrix: 

𝐶 = �
1 0.7 0.3

0.7 1 0
0.3 0 1

�. 

The correlation of the variables means that there will be greater variability in some three-dimensional directions, but these 
dimensions will not generally align with the axes or other convenient directions. 

The eigenvalue decomposition of 𝐶 gives the following (to three decimal places): 
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𝑉 = [𝑣1 𝑣2 𝑣3] = �
0.707 0 −0.707
0.650 −0.394 0.650
0.279 0.919 0.279

�      𝑎𝑛𝑑     Λ = �
1.762 0 0

0 1 0
0 0 0.238

�. 

Scatter plots of the points are shown in  Figure 15 in the original coordinate system.  That is, using regular Cartesian coordinates as 
the basis: [1,0,0]⊤, [0,1,0]⊤ and [0,0,1]⊤.  Each point is represented as a linear combination of these orthonormal basis vectors.  
Also shown in  Figure 15 (in red) are the eigenvectors scaled by the square root of the corresponding eigenvalues.  The largest of 
these eigenvectors points in the direction of maximum variability, which is the eigenvector corresponding to the largest 
eigenvalue.  This is the direction 𝑣1 = [0.707, 0.650, 0.279]⊤.  This can be seen as the longest red line in the scatter plot of 
variable 1 versus variable 2, as these are the most highly correlated pair of variables.  This same direction (as well as the other 
directions) is less obvious in the other subfigures as the eigenvectors do not align nicely with the axes. 

Applying a change of basis (change of coordinate system) so that all the points are represented as a linear combination of the 
eigenvectors 𝑣1, 𝑣2 and 𝑣3 can be performed by (left) multiplying the data points by 𝑉⊤.  The points in the new coordinate system 
are plotted in  0.  This gives us a clearer view of the system as the direction of greatest variability is (by definition) aligned with the 
axes.  The eigenvectors of the data points in the new coordinate system are also shown in  0 in red.  The eigenvector corresponding 
to the largest eigenvalue is in the direction of the “Eigenvector 1” axis.  This gives the direction of greatest variability.  The direction 
of the eigenvector corresponding to the second largest eigenvalue points in the direction of greatest variability subject to the 
restriction that it must be orthogonal to 𝑣1.  This is the axis denoted “Eigenvector 2”.  Finally, the direction corresponding to the 
last eigenvector is completely defined by the need to be orthogonal to both of the other eigenvectors. 

 

 

 Scatter plots in terms of the points in axes of the original variables.  Also shown in red is indication of the Figure 15
eigenvectors for the covariance matrix of the points in this coordinate system, which are scaled by the square root 
of the corresponding eigenvalue.  Note that the eigenvectors point in the direction of largest variability.  This can be 
observed in the scatter plot between variables 1 and 2 (as these are the most highly correlated), but is less clear in 
the other subfigures because of the three-dimensional nature of the system. 
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 The same points as in  Figure 15, but transformed into coordinates of the eigenvectors of the covariance matrix of Figure 16
the original points.  In this coordinate system the points represent the magnitudes of the eigenvalues that are 
required to reproduce the original points.  These are sometimes known as the “scores”.  Also shown in red is an 
indication of the eigenvectors for the covariance matrix of the points in this new coordinate system, which are 
scaled by the square root of the corresponding eigenvalue.  Note that these eigenvectors always point in the 
direction (positive or negative) of the axes, confirming that these new axes are independent. 

 

 

 Singular value decomposition Appendix B

SVD reduces a real 𝑚 × 𝑛 matrix 𝑀 to three components as follows: 

𝑀 = 𝑈𝑆𝑉⊤. 

Here, 𝑈 is an 𝑚 × 𝑛 orthonormal matrix, 𝑆 is an 𝑛 × 𝑛 diagonal matrix containing the “singular values”, and 𝑉 is an 𝑛 × 𝑛 
orthonormal matrix.   

The columns of the matrix 𝑈 are eigenvalues of the matrix 𝑀𝑀⊤, and the columns of the matrix 𝑉 are eigenvectors of the matrix 
𝑀⊤𝑀. The singular values (diagonal entries of the matrix 𝑆) are all non-negative, being the positive square root of the eigenvalues 
of the matrix 𝑀⊤𝑀. 

The matrix produced by the multiplication 𝑈𝑆 is known as the scores matrix and represents the magnitudes of the columns of 𝑉 
that produce the raw data in 𝑀. 

In theory, SVD is a very stable decomposition as it is always perfectly conditioned.  Hence it is often used instead of eigenvalue 
decomposition for ill conditioned or rank deficient matrices.  Note that correlation matrices can be very highly ill-conditioned. 

 

 Link between SVD and eigenvalue decomposition Appendix C

If the original data matrix, 𝑀, has mean zero, then the pairwise covariance matrix, 𝐶, is 

𝐶 =
1

𝑛 − 1
𝑀⊤𝑀, 

which is a symmetric 𝑛 × 𝑛 matrix.  Using the SVD of 𝑀 we have 

𝑀⊤𝑀 = (𝑈𝑆𝑉⊤)⊤(𝑈𝑆𝑉⊤) = 𝑉𝑆⊤𝑈⊤𝑈𝑆𝑉⊤ = 𝑉𝑆2𝑉⊤, 

and hence 

𝐶 =
1

𝑛 − 1
𝑉𝑆2𝑉⊤. 



  

 25 AUGUST 2014 

ENTERPRISE RISK SOLUTIONS 
 

PRINCIPAL COMPONENT ANALYSIS FOR YIELD CURVE MODELLING : REPRODUCTION OF OUT-OF-SAMPLE-YIELD CURVES 

 

Directly applying eigenvalue decomposition to the correlation matrix gives 

𝐶 = 𝑉Λ𝑉⊤. 

Equating these two decompositions of 𝐶 means that: 

1
𝑛 − 1

𝑉𝑆2𝑉⊤ = 𝑉Λ𝑉⊤. 

Since the matrix 𝑉 is the same in each case, we obtain an equation linking the eigenvalues and singular values: 

Λ =
1

𝑛 − 1
𝑆2. 

As both Λ and 𝑆 are diagonal, this equation also holds elementwise. 

 

Application to a real symmetric matrix 
Now consider the application of SVD to a real symmetric matrix, 𝐴, such as a covariance or correlation matrix.  This means that 

𝐴 = 𝑈𝑆𝑉⊤. 

Since 𝐴 is symmetric, then 𝑈𝑆𝑉⊤ must also be symmetric.  This means that |𝑈𝑖𝑗| = |𝑉𝑖𝑗|, meaning that the elements can only 
differ by a sign change.  Relating this to the eigenvalue decomposition, this also implies that the eigenvalues and singular values 
can also only differ by a sign change.  It turns out that the differences in sign are associated with negative eigenvalues and so 
𝑈 = 𝑉 whenever 𝐴 is positive semidefinite.  In this case there is no difference between SVD and eigenvalue decomposition apart 
from arbitrary sign changes in the eigenvectors, and numerical accuracy effects when the matrix is ill conditioned. 

For any singular value corresponding to a negative eigenvalue, the corresponding column of 𝑈 is multiplied through by -1.  This is 
basically moving the negative from the eigenvalue to the corresponding column of 𝑈, so as to make the singular value positive.  
when SVD is used, negative eigenvalues can be detected by looking for differences in sign between columns of 𝑈 and 𝑉. 

For the purposes of PCA either method can be used.  They both produce the same PCs (eigenvectors) up to a sign change, and 
they both produce the same eigenvalues/singular values up to a sign change.  
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Further Reading 

For additional details, please read the following resources. 

» Press, Teukolsky, Vetterling and Flannery: "Numerical Recipes in Fortran 77, The Art of Scientific Computing" (2nd ed.) 
Cambridge University Press, 1992. 
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