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Using Machine Learning in Actuarial Modeling 
to improve model efficiency through better 
clustering    

Artificial intelligence (AI) and in particular machine learning are increasingly becoming a 
popular and important component of an actuary’s toolkit. As the amount of data available to 
actuaries continues to increase, these techniques can allow them to extract more insight; 
which improves the quality of their analysis, and the resulting decisions the insurer makes.   

This paper will explore one of the ways Moody’s Analytics has implemented AI within our 
AXIS™ actuarial system to facilitate the use of powerful model efficiency techniques, and 
reduce the run time on large models, without adversely affecting accuracy. 

What is Machine Learning? 

Machine learning is a method of teaching computers to analyze data, learn from it, and then 
make a determination or prediction regarding new data. Rather than hand-coding a specific 
set of task-focused instructions, the machine is “trained” using large amounts of data and 
algorithms to learn the task. 

Figure 1 AI Definitions 
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Machine learning has already brought several benefits for actuaries: 

Figure 2 Benefits of Machine Learning in Actuarial Modeling 

 

Machine learning techniques have been applied to a range of actuarial applications including: 

» Mortality forecasting1  

» Customer support  

» Marketing 

» Predicting future claims as part of pricing tool  

» Utilizing unstructured data in forecasting interest rates2 

 

The Challenge 

Under IFRS 17 and other new reporting frameworks, insurers must: 

» Increasingly run actuarial models to model their business on a seriatim (policy by policy) basis  

» Run those models a greater number of times in a reporting cycle 

 
The increasing amount of policy data that insurers have available fuels the challenge - as well as the requirement for better, more 
timely management information. With these demands, the resulting costs and extended runtimes can be onerous, even with 
today’s powerful technology. Therefore, management’s ability to make fast, informed decisions based on timely results may be 
impaired. 

 

 

Our Solution - Agglomerative Clustering 

 
1  https://www.theactuary.com/features/2020/08/05/machine-learning-deep-end  

2  https://www.actuaries.org.uk/documents/practical-application-machine-learning-within-actuarial-work  

https://www.theactuary.com/features/2020/08/05/machine-learning-deep-end
https://www.actuaries.org.uk/documents/practical-application-machine-learning-within-actuarial-work
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To address this challenge, Moody’s Analytics has implemented many powerful model efficiency techniques to help improve 
performance. In particular, the AXIS system supports both traditional and advanced data compression/grouping methods. These 
methods reduce data models that contain many policies into fewer model points which each represents several original policies.   

Policy grouping traditionally involves using a fixed, predefined set of rules to group individual policies into a smaller number of 
representative policies. This is done without regard to the varying impact of that compression on model accuracy. 

Clustering is a statistical technique commonly used to identify naturally occurring groups within large amounts of data. This 
technique can be applied to insurance modeling and overcomes the disadvantages of traditional grouping. In a seriatim data 
model, natural data clusters can be found due to similarities in product features, timing of policy issuance, policy holder age, and 
fund guarantee levels. All of these features impact the modeled cash flow patterns. Clustering compression techniques in the AXIS 
system work within these clusters to reduce the impact on accuracy, and enable a flexible approach to determining the final 
amount of compression to be used. 

Like traditional grouping, a “central” policy represents the whole cluster, by scaling up the central policy’s calculated results. 
However, clustering differs from traditional grouping in many significant ways. 

Figure 3 Clustering v. Traditional Grouping 

Traditional Grouping Clustering 
Predefined grouping rules  No requirement for predefined groupings. Determined 

based on the actual data 
Compression ratio an output of the process Target compression ratio can be set as an input to the 

process 
Changing compression ratio requires new grouping 
rules to be defined and the grouping process to be 
repeated in full. 

The compression ratio can be adjusted to achieve an 
acceptable distortion when compared to the full 
seriatim data model 

Different data models require creation of multiple 
predefined groupings and running of multiple 
processes.  

Multiple Data Models of different compression levels 
can be generated for different purposes in one process 

 

There are various algorithms used in statistical analysis to perform clustering of data. In the AXIS system, an “agglomerative” 
clustering technique is used. Under this approach: 

» Each policy starts as its own "cluster" 

» Distance (similarity) between every pair is calculated using chosen location variables (characteristics) for each policy 

» The least important cluster by size and distance is found and merged into the nearest cluster 

» Clustering process continues until the target compression is achieved. 

 

The following diagrams show the clustering process for a simple example, with 20 seriatim policies of varying sizes and 
characteristics and a target compression ratio of 20% - reducing the policies into four clusters. 
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Step 1: Seriatim data assigned location variables 
and size 

 

Step 2: Distances between all pairs calculated  

 

 
Step 3: Closest pairs identified 

 

 

Step 4: Least important clustered with larger 
adjacent point 

Step 5: Next closest pairs identified  

 

Step 6: Least important clustered with larger 
adjacent point  
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Step 7: Remaining closest pairs identified to reach 
target 

 

Step 8: Final clustering performed. Highly 
compressed model and original model shown.  

 
 

Neural Networks - How Moody’s Analytics has Incorporated AI into our AXIS solution 

Moody’s Analytics has extended functionality using machine learning techniques, in particular Neural Networks to improve the 
performance of the clustering process. 

Within the clustering process, the definition of the mapping (or location variables) has a critical impact on the efficiency of the 
clustering. Ideally, policies from the same cluster should deliver model results close to those of the cluster’s representative policy. 
In this case, the error introduced by the substitution of a policy by its cluster representative will be small, suggesting that the best 
location variables are the actual policy results themselves (for example, a seriatim reserve). However, this would involve 
performing the full calculations for each policy, negating the advantage of clustering.  

Neural networks are non-linear statistical data modeling or decision-making tools which attempt to emulate the immense parallel 
computing power of the human brain. Such networks can be used to model complex relationships between data inputs and 
outputs or to find hidden patterns in data. Neural networks effectively learn from their experience and adapt their logic and 
predictive models accordingly. Moody’s Analytics has developed a technique of creating and optimizing the location variables 
needed for effective clustering using a neural network approach. 

Configuring and using a neural network involves the following steps: 

1. Select neural network architecture 

2. Select activation functions 

3. Train the neural network to find parameters which optimize it 

4. Use the neural network to predict output values 

 

Neural network architecture 

A neural network contains a sequence of layers: 

» Input layers which provide the initial data used within the neural network 

» Output layers which produce given outputs for the neural network to deliver the result.  
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» Hidden layers which are intermediate layers between the input and output layers. The number of hidden layers can be user-
defined. In theory, one hidden layer is sufficient if it has enough nodes. In practice, deep networks (those with multiple hidden 
layers) do the same job with fewer total number of weights and nodes. We have found that two or three hidden layers work 
well.  

Each layer is made up of a set of nodes. The number of inputs into and outputs required from the Neural Network defines the 
number of nodes in the Input and Output layers. Each node in the hidden layers takes as its input, a combination of the outputs 
from the previous layer. The combination is usually a weighted sum shifted by a bias term. Each node then processes its signal 
through an activation function and outputs it to the next layer. 

Figure 4 Neural Network 
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In the Neural Network architecture shown in Figure 1, the outputs from each layer are calculated as follows: 

For Hidden Layer 1: 

𝑥𝑥𝑗𝑗1(𝑍𝑍) = Φ1 �� 𝑍𝑍𝑖𝑖𝑤𝑤𝑖𝑖,𝑗𝑗1 + 𝑤𝑤0,𝑗𝑗
1

3

𝑖𝑖=1
�  

For Hidden Layer 2: 

𝑥𝑥𝑗𝑗2(𝑋𝑋) = Φ2 �� 𝑥𝑥𝑖𝑖1𝑤𝑤𝑖𝑖,𝑗𝑗2 + 𝑤𝑤0,𝑗𝑗
2

4

𝑖𝑖=1
�  

For the output layer: 

𝑌𝑌𝑗𝑗(𝑋𝑋) = 𝑥𝑥𝑗𝑗3(𝑋𝑋) = Φ3 �� 𝑥𝑥𝑖𝑖2𝑤𝑤𝑖𝑖,𝑗𝑗3 + 𝑤𝑤0,𝑗𝑗
3

3

𝑖𝑖=1
�  

 

Where: 
» 𝑍𝑍𝑖𝑖 is the input to the Neural network from Input node i 

» 𝑤𝑤𝑖𝑖,𝑗𝑗𝑘𝑘 is the weight applied to the input to node j in layer k coming from node i of the previous layer (with i=0 identifying the 
bias term) 

» Φ𝑘𝑘(𝑥𝑥) is the activation function used to process inputs in layer k 

» 𝑥𝑥𝑗𝑗𝑘𝑘(𝑋𝑋) is the output from node j in layer k 

 

Activation Functions 

The optimal choice of the activation function depends on the application. The AXIS system currently supports the following 
activation functions (depending upon a layer): 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 𝜎𝜎(𝑧𝑧) =
1

1 + 𝑒𝑒−𝑧𝑧
 

𝑇𝑇𝑇𝑇𝑇𝑇ℎ: 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑧𝑧) =
𝑒𝑒𝑧𝑧 − 𝑒𝑒−𝑧𝑧

𝑒𝑒𝑧𝑧 + 𝑒𝑒−𝑧𝑧
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿: 𝑙𝑙(𝑧𝑧) = 𝑧𝑧 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅): 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧) = max (0, 𝑧𝑧) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 𝑠𝑠(𝑧𝑧) = ln (1 + 𝑒𝑒𝑧𝑧) 

In choosing an activation function to use, clients should consider the relationship between the inputs and outputs of the 
relevant nodes. Also consider boundaries to be applied to the outputs. Examples of considerations include: 

» If non-linearity is observed in these relationships, then the linear activation function will not be appropriate as it will not 
capture these patterns. This function also may not be suitable if bounds on the outputs exist as there are no upper or lower 
bounds on the values that the outputs can take.  

» If a lower bound of 0 is required, then the ReLU function may be appropriate but is still unbounded. It is also non-
differentiable at z=0. This problem can be avoided by using the SoftPlus function. As z tends to −∞ the Softplus function 
tends to 𝑒𝑒𝑧𝑧 which approaches 0 and as z tends to ∞ it tends to 𝑧𝑧 + 𝑒𝑒−𝑧𝑧 which approaches z so is a smooth approximation to 
the ReLU function.   

» The Tanh and Sigmoid function will allow non-linear relationships to be captured. It will also bound output values between 0 
and 1 (Sigmoid) or -1 and 1 (Tanh) 
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After the number of layers and activation functions have been selected, the neural network can be used to approximate the 
desired result for each policy. The process for using the neural network can be split into two sub-processes: 

» Training: Find the parameters (weights and biases) which optimize the neural network. 

» Scoring: Using the neural network to predict the outputs for the full set of policies. 

 

Train the neural network 

A subset of the policies can be run through the full model to create outputs for training data. The Neural Network is trained 
using these results. Given the input and output variable values for the training set; the training process aims to find the weights 
that minimize the square error across all outputs for all records. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = � � �𝑌𝑌𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑍𝑍) − 𝑌𝑌𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑍𝑍)�

#𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1

2# 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑖𝑖=1

 

 

Where: 

» 𝑌𝑌𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑍𝑍) are the output values produced by the neural network 

» 𝑌𝑌𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑍𝑍) are the actual policy results 

 

The training data used should be representative of the full set of policies – both in terms of distribution and number of records. 
The training will lead to a better approximation of the input values in the areas for which more  data is available. To ensure that 
the network also produces valid outputs for policies outside of those used for training, the training data may be split into two 
parts. Some policies will not be included in the training process, but scored by the resultant neural network. This means that the 
errors between the accurate full model results and the scored results can be calculated. 

Use the neural network to predict output values 

After the Neural Network is trained (optimal weights are found), it can be used to score the outputs for policies not included in the 
training set. In the clustering process, the complete policy set’s Neural Network scoring results are used as location variables. As 
the results approximate the actual policy results; utilizing them in this way improves the likelihood that the representative policies 
will generate results, consistent with those of the policies clustered together. 

Conclusion 

The continued development of machine learning techniques introduces interesting possibilities for how they can be used to extend 
the usage of actuarial models. Through the adoption of new techniques, improved data quality, greater performance, and 
increased automation, these techniques allow actuaries to make more effective use of the increasing amounts of data available.  

The ability to train neural networks and use them to replace trial and error experimentation within the AXIS actuarial system 
opens up a range of applications. This paper has highlighted one of the key ways that they are utilized: to improve the use of 
clustering as a model efficiency technique, allowing actuaries to improve their own efficiency and ability to support regulatory 
reporting. It also improves management decision-making on a flexible, timely, and cost-effective basis. 
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